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Learning Without Error

Erez Braun and Shimon Marom

Learning is a process of growing success in a fixed environment. One can only 
speak about learning when behavior noticeably increases the efficiency with which 
information is processed so that desirable states are reached, errors are avoided, or 
a portion of the world is controlled1. The concept of error plays a key role in gen-
eral learning theories, and reinforcement learning in particular. In these theories2 a 
dedicated entity is invoked, whose function is to compare the state of the system to a 
desirable state, and to produce an error signal that drives the system to change. That 
such is the case in machine reinforcement-learning protocols, one cannot argue. But, 
what about learning in biological systems? We submit that, if not for deep philo-
sophical reasons, the schematics portrayed for reinforcement learning in machines 
cannot hold for biological systems. For an error signal to be produced, states should 
be measured and compared; but since biological states are practically infinite object 
that are not local in time nor in space3,4, the scales and standards required for mea-
surements and comparisons do not exist. We provide examples for state-space 
immensity5 at three levels of biological organization that are intimately related to 
the subject matter: molecules, cells and behavior. We then comment on the impacts 
of this immensity on learning and on the practice of experiments in biology.

As a representative of state space immensity at the molecular level, consider the 
number of possible states in which particular proteins, the voltage-gated ionic-chan-
nels family, may reside. These proteins are responsible for shaping the time-ampli-
tude envelope of neuronal and synaptic signals, and their state space is described as 
highly relevant for neuronal activity (the interested reader is referred to the authori-
tative monograph by B. Hille6). Molecular biologists and physiologists have con-
vincingly shown over the past two decades that the number of types of ionic channel 
proteins that a single neuron expresses at any given point in time is in the order of 
ten. Each type of channels is composed typically of five to ten sub-types that form 
combinatorial structures that have different functional consequences. Depending 
on that combinatorial structure, the channel proteins are extensively engaged in 
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interactions with ligands and with other proteins, interactions that have significant 
functional consequences. Furthermore, recent estimates and measurements indicate 
that even a bare, stand-alone ionic channel protein, has intrinsic to it a large number 
of possible states7. Other examples may be given for molecular immensity within 
the domains of synaptic functions, second messengers and related signal transduc-
tion pathways.

The molecular immensity exemplified above does not disappear at higher levels 
of brain organization. Consider, for instance, a cortical neuron in its network: It is 
known that the number of synapses impinging upon a single neuron in the human 
cortex is well beyond one hundred. In fact, estimates are that each cortical neuron is 
affected by the states of thousands of other neurons (the interested reader is referred 
to the monograph by Abeles8). This means that, even for the most simple case, in 
which the spatial and temporal attributes of a single neuron are not considered, 
and even if one assumes that synaptic inputs come in packets of several hundred 
of correlated synapses, the number of possible single-neuron states is immense. 
Indeed, careful analyses of neural activity time series, recorded from neurons in 
wake animals, show that these neurons have no preference for any limited set of 
uniquely defined states. Rather, their activity characteristics are consistent with a 
continuum-of-states model. Strong claims were made, supported by exhaustive sta-
tistical analyses, pointing to the curious fact that the number of neuronal states, 
reflected in the activity of neurons, is practically limited only by the experimental 
conditions and the rituals of statistical analyses9.

What about overt behavior? Unlike the case of neurobiology, where the space 
of possible brain states is defined, the language is agreed upon and the problem is 
of identifying relevant states, in psychology there seems to be no consensus on the 
actual definition of the state-space itself10. This alarming situation is further compli-
cated by the fact that whereabouts precise analysis is feasible, experimental findings 
indicate that behavior cannot be decomposed to a fathomable number of uniquely 
defined states. Consider, for example, an experimental psychology field that is 
(arguably) most approachable for scientific analysis, namely- the study of memory. 
In 1885, Ebbinghaus reported his seminal introspective study of human memory. 
He demonstrated that while the retention of nonsense syllables decreases as time 
elapsed from the initial learning increase, the rate at which that decrement occurs 
monotonically slows down, that is to say, not fixed. Ebbinghaus intuited that the 
mathematical form of the forgetting function is logarithmic. Unlike the exponential 
function commonly used to describe relaxation data, which would imply a fixed rate 
of forgetting in that case, Ebbinghaus’s logarithmic function implies a rate of forget-
ting that depends on the time elapsed since the learning. Thus, if one accepts the 
physical-chemistry principle equating a single state with a single rate, Ebbinghaus’s 
interpretation implied no unique memory states because no unique rates are found11. 
Notwithstanding a transient belief in the short-term memory theory during the early 
1970’s, cognitive psychologists now have ample evidence in favor of Ebbinghaus’s 
interpretation. In fact, re-analysis of Ebbinghaus’s data, taken together with a host 
of new data, indeed confirm that memorizing and forgetting cannot be described 
by a fathomable set of uniquely defined rates12, and therefore no fathomable set 
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of uniquely defined states are involved. Thus, we see that in the behavioral level 
of organization the problem is twofold. First and foremost, behavioral states are 
ill defined, leading to a conceptual alienation. Second, behavioral entities that are 
approachable for precise analysis reveal an immense space of possible states.

The examples given above show that immensity of state space reigns at every 
level of biological observation, from molecules to behaviour. We conclude that the 
scales and standards required for the identification of a state and hence an error 
cannot be constructed in a biological system. This is the case already at the molecu-
lar level and definitely at higher levels (cells, organs, organisms and populations), 
which are aggregates of molecules. No error assignment can be exercised under 
such conditions. While the above examples are from the discipline of neural sci-
ences, the picture is practically identical in many other biological systems (e.g. 
immune system, genetic networks and development).

Another possibility to construct scales and standards is by attributing functional-
ity to a biological system. In that case error would be defined in terms of deviations 
from the “standard” functionality. While functionality is the hallmark of biological 
systems, it is an alien concept for the other natural sciences. In that respect, biology 
is closer to engineering sciences and man made machines. However, in contrast 
to engineering, biology is an historical science; presently observed configurations 
reflect accumulation of accidental events over evolutionary time scales, selection 
processes, multi-functionality, an immense number of entailments between func-
tions, redundancies and overlap within and between levels of organization. These 
facts, taken together with the above-mentioned immensity of degrees of freedom 
preclude the possibility of adapting a given functionality as a standard for error 
detection. As a result, assigned functionality reflects the point of view of a given 
observer rather than that of the “designer”. For instance, going back to the channel 
protein mentioned above: It is known that the protein can function only within a 
narrow voltage range around a set point determined by the gradient of ionic concen-
trations across the cell membrane. From the point of view of electrical functional-
ity one may assume that the ionic concentration has been optimized to support the 
activity of the ionic channel proteins. This functionality of ionic concentrations, 
however, cannot serve as standard for error detection because the set point is similar 
in practically all cell types, including those that are not generators of electrical sig-
nals. The fact is that the ionic concentration gradients are key determinants of many, 
unrelated physiological processes within the same cell; hence the requirement for 
evolutionary selection. In order to understand the design principles behind ionic 
concentrations one needs to uncover the entire historical path and the set of all the 
involved interactions. Indeed, understanding the functional relations between the 
components of the biological system is possible only from the evolutionary point 
of view.

From the above we are again forced to conclude that lack of standard makes the 
concept of error irrelevant in the context of biological systems. This conclusion intro-
duces serious problems in attempts to understand the biology of learning in its wider 
sense. For whatever definition we use for learning, a measure is required for the gap 
between present and desired configuration; in other words, a measure of the error is 
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required. Under these conditions such an error measure is translated to driving force 
that modifies the configuration of the system, aiming at error reduction. Lack of scales 
and standards thus presents us with a challenge to understand learning in the biological 
context. How does the immune system learn to identify pathogens? How does a col-
ony of ants learn to construct nests, or to form patterns of tracks towards food sources? 
How do bacteria swim upstream food gradients given a single bacterium small scale? 
In fact, how do we, human beings, learn? What are the mechanisms allowing for adap-
tive reconfiguration of the immense number of entities involved in learning?

The common feature in all learning phenomena is the existence of exploration in 
configuration space. What makes learning in biological systems unique is the fact 
that, unlike man-made machines, the driving force for the exploration does not scale 
with the gap between present position and desired one. Rather, it is only dictated by 
local measures, irrespective of its distance from target.

For example, let us consider learning in the neural system. We know, from every 
day experience, that it is widely accepted to use evaluative-concepts in descrip-
tions of learning in psychology; i.e., “appropriate” behaviour is “rewarded”, “right” 
actions are “positively reinforced” and “wrong” are “negatively reinforced” (i.e. 
“punished”). Such language usage implies that in learning, surely, error measures 
are used and therefore standards are required. At the beginning of the twentieth 
century, the modern terminology of learning was established. Rules of association 
by simultaneity and temporal sequences involved in instrumental conditioning were 
defined. It became clear that the concepts of reinforcement, reward, punishment, are 
extremely useful in describing and controlling behaviours. Attempts to understand 
how the concept of reward is realized in a biological world that lacks standards were 
made by eminent psychologists such as Hull13 and Guthrie14 over fifty years ago 
and even earlier by Freud15 and James16. The resulting learning theories, which may 
collectively be referred to as Drive Reduction theories, stress the effect of reward 
on the driving stimulus. Specifically, the reward acts to reduce the stimulus that 
drives the exploration process. This reduction is based on local cues and precludes 
the acquisition of new stimulus-response entailments. Sharpening the stimulus-re-
sponse entailment, in turn, is achieved through a selection process. Such description 
of learning in neural systems classifies the operation of the brain as a Darwinian 
process, similar to the other above-mentioned biological systems. That is, no sepa-
rate neural rewarding entity is postulated or needed for shaping behaviour. In fact, 
one may find texts that explicitly reject mapping of evaluative behavioural concepts 
to defined brain entities, suggesting that the concept of error does not belong to the 
neural system itself, but rather to the larger complex that contains the environment, 
the system and the observer. Here is, for instance, what Guthrie said in his presiden-
tial address to the American Psychological Association in 1946:

Psychologists who think in terms of punishment and reward have almost uniformly 
neglected to note how the animal at the time responded to the punishment or to the reward, 
and the role this played in subsequent behavior. The resulting generalization is inevitably an 
attempt to link the intentions of the experimenter (intentions to reward or punish) with good 
or bad behavior on the part of the animal. Punishment and reward are, objectively viewed, 
stimuli acting on the animal’s sense organs, and their effect must be mediated through the 
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animal’s nervous system and appear in muscular contraction or glandular secretion. Since 
levers and loops and mazes are not innervated, the operations of these devices are incidental 
to the actual learning which the living animal performs.17

In spite of the above, the prevailing trend is to describe biological processes, 
including brain functions, in mechanistic terms of error detection, non-local driving 
forces and optimization processes18. Indeed, parts of biology may be described in 
such terms; the price being loss of the global, system point of view. It is acknowl-
edged that mechanistic approaches to biology reflect present technological fore-
fronts and are effective for specific applications (e.g. medical treatments). A most 
notable example is the interaction between the impressive technological develop-
ments of computing machines and brain research. While, as mentioned above, the 
general learning theories of the early 1920’s explicitly advocated avoidance of 
attempts to map evaluative concepts to specific brain structures, nowadays such 
mapping dominates neuroscience. This shift reflects the dominance of the computer 
paradigm in brain research. Most algorithms used for effective machine learning are 
supervised ones, where an additional source of information, of knowledge of the 
error, dictates the drive and directs the learning process. Interestingly, when cogni-
tive psychology, heavily relying on computational theories, entered the arena and 
practically removed behaviourism and general learning theories from the scene, it 
brought with it the error-based algorithmic computational approach.

History teaches us that the duality of mechanistic and Darwinian aspects will 
continue to drive the biological research. Jerne describes this historical pattern in a 
text written in 1967:

Looking back into the history of biology, it appears that wherever a phenomenon resembles 
learning, an instructive theory was first proposed to account for the underlying mechanisms. 
In every case, this was later replaced by a selective theory. Thus the species were thought to 
have developed by learning or by adaptation of individuals to the environment, until Darwin 
showed this to have been a selective process. Resistance of bacteria to antibacterial agents 
was thought to be acquired by adaptation, until Luria and Delbrück showed the mechanism 
to be a selective one. Adaptive enzymes were shown by Monod and his school to be inducible 
enzymes arising through the selection of pre-existing genes. Finally, antibody formation that 
was thought to be based on instruction by the antigen is now found to result from the selec-
tion of already existing patterns. It thus remains to be asked if learning by the central nervous 
system might not also be a selective process; i.e., perhaps learning is not learning either.19

This duality presents a challenge to experimental biologists. Setting up experi-
mental designs aimed at exposing mechanistic aspects of a given biological system 
is a natural extension of prevailing paradigms in engineering and physical sciences. 
However, uncovering the Darwinian aspects of biological systems requires new 
experimental concepts. The experimental design, in such cases, should allow the 
observed system to control its driving forces based on interactions with the envi-
ronment. In other words, standards reflecting the experimental constraints should 
be eliminated. Results from such experiments will enable development of compre-
hensive understanding the unique aspects of biology, and may serve as a basis for a 
paradigm shift in engineering.
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Notes

 1. Klaus Krippendorff’s Dictionary of Cybernetics (URL =  http://pespmc1.vub.ac.be/ASC/
LEARNING.html)

 2. E.g., Sutton and Barto (1998)
 3. Rosen (1991)
 4. A term introduced in Elsasser (1987)
 5. Elsasser (1987)
 6. Hille (1992)
 7. E.g., Toib et al. (1998); Ellerkmann et al. (2001); Gilboa et al. (2005)
 8. Abeles (1991)
 9. E.g., Teich et al. (1997)
 10. E.g., the alienation between the concepts of cognitive psychology and those of psychodynamics.
 11. Interestingly, the modern concept of scale-free distribution does fit Ebbinghaus’s description; 

scale-free distributions are often interpreted as indicating (practically) continuum of states. 
See also note 7 and 9 above.

 12. E.g., Wixted and Ebbesen (1997)
 13. Hull (1943)
 14. Guthrie (1946)
 15. Freud (1895/1966)
 16. James (1890)
 17. Guthrie (1946).
 18. E.g., Hollerman and Schultz (1998)
 19. Quarton et al. (1967), p. 204
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